

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

NMR Spectroscopic Study of Camphanic Acid, Rh₂[Camphanate]₄, and its Adducts with 1,4-Benzodiazepines

Branimir Klaić^a; Zlata Raza^a; Radovan Marćec^a; Vladimir Vinković^a; Vitomirš Unjić^a

^a Ruder Bošković Institute, Zagreb, Croatia

To cite this Article Klaić, Branimir , Raza, Zlata , Marćec, Radovan , Vinković, Vladimir and Unjić, Vitomirš(1995) 'NMR Spectroscopic Study of Camphanic Acid, Rh₂[Camphanate]₄, and its Adducts with 1,4-Benzodiazepines', *Spectroscopy Letters*, 28: 5, 683 — 697

To link to this Article: DOI: 10.1080/00387019508009911

URL: <http://dx.doi.org/10.1080/00387019508009911>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**NMR SPECTROSCOPIC STUDY OF CAMPHANIC
ACID, Rh₂[CAMPHANATE]4, AND ITS ADDUCTS
WITH 1,4-BENZODIAZEPINES**

Key words: NMR study, Camphanic acid, Dirhodium tetracamphanate complex,
5-Pyrido-1,4-benzodiazepin-2-ones

**Branimir Klaić, Zlata Raza, Radovan Marčec, Vladimir Vinković
and Vitomir Šunjić***

Ruder Bošković Institute, Zagreb, P.O.B. 1016, 41001 Zagreb, Croatia

ABSTRACT

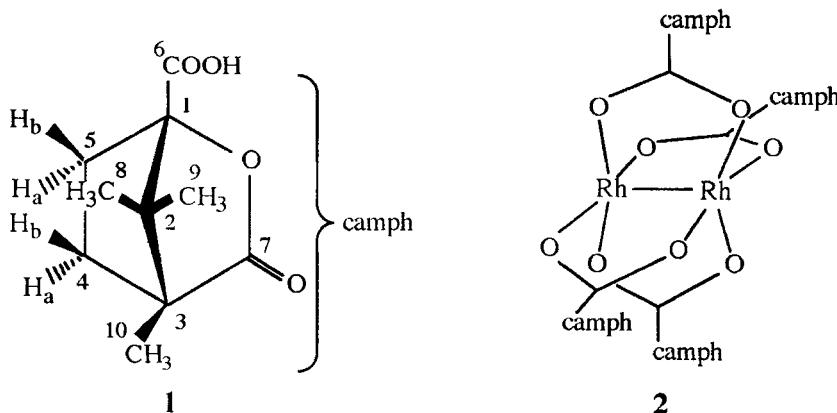
The ¹H and ¹³C NMR spectra of chiral camphanic acid, lactone of (*1S,3R*)-1-hydroxy-2,2,3-trimethyl-cyclopentan-1,3-dicarboxylic acid (**1**), and dirhodium tetracamphanate complex (**2**) were completely assigned on the basis of one- and two-dimensional NMR experiments. The NMR spectra of the adducts of dirhodium tetracamphanate **2** with 5-pyrido-1,4-benzodiazepin-2-ones **3** and **4**, complexes with catalytic activity, support the assignation and also revealed two different types of axial complexation of these nitrogen ligands.

INTRODUCTION

Dirhodium tetracarboxylate complexes $\text{Rh}_2(\text{OCOR})_4$ have attracted a considerable interest due to their catalytic and biological activity. These dimeric compounds form a rhodium-rhodium multiple bond, while four carboxylates bridge two rhodium atoms.¹ Two axial positions can be occupied by a variety of σ and π donor ligands.^{1,2} Many examples of two nitrogen ligands bound in monodentate mode to axial positions yielding symmetric 2:1 adducts $\text{R}'_2\text{NRh}(\text{OCOR})_4\text{RhNR}'_2$ are reported in the literature.¹ The ligands in the axial positions, unlike the equatorial carboxylate ligands, are labile and can easily be exchanged. The adducts of dirhodium tetracarboxylates with nitrogen bases are important complex species because of their biological activity³ and catalytic properties.^{4,5} Biological activity has stimulated an intense study of the chemistry of achiral dirhodium tetracarboxylates, mainly dirhodium tetraacetates with ligands of relevance in biology such as adenine and other nucleobases, or some model bisnitrogen ligands.⁶⁻⁸

Camphanic acid (**1**) is a well known chiral auxiliary agent, used for separation of racemates,^{9,10} in the preparation of chiral phosphine ligands for Rh(I) complex catalysis,^{11,12} and in structural studies.^{13,14} However, there is no report on the full assignment of proton and carbon atoms in the ¹H and ¹³C NMR spectra of camphanic acid or its complex salts.

EXPERIMENTAL


NMR experiments. The ¹H and ¹³C NMR spectra were recorded at 25°C with a Varian-Gemini 300 spectrometer operating at 300.08 and 75.46 MHz, respectively. Each one-dimensional ¹H NMR spectrum was collected using a single 30° (5 ms) pulse, 1 s of relaxation delay time, the acquisition time of 2.0 s, and with total sweep width of 3000 Hz, sampled with 12K points. Data processing employed a Lorentz line broadening factor of 0.5 Hz. The spectra were referenced to the residual solvent signals [(CD₃)₂CO δ = 2.04, C₅D₅N δ = 7.19, and CDCl₃ δ = 7.26 ppm]. The sweep width used for the ¹³C NMR spectra were 18000 Hz, the pulse width was 4.5 ms (30°), the acquisition time

was 1.25 s and the relaxation delay was 1 s. Chemical shifts were measured relative to internal solvent signals set at $[(CD_3)_2CO \delta = 29.8, C_5H_5N \delta = 123.5,$ and $CDCl_3 \delta = 76.9$ ppm] downfield to tetramethylsilane.

Two-dimensional experiments: homonuclear 1H - 1H chemical shift correlation (COSY) spectra, NOESY and HETCOR were performed at $25 \pm 10^\circ C$ using a standard sequence of the Varian Gemini software package. The COSY spectra were obtained in the magnitude mode, while the NOESY spectra were obtained in the phase-sensitive mode. The COSY and NOESY experiments had 1024 points in the F2- and 256 slices in F1-dimensional, which were zero-filled to 1024 points. Each slice was obtained using 16 averages, the relaxation delay of 1 s and the spectral width of 3000 Hz. The resolutions in both domains were 6.0 Hz/point. The NOESY employed the mixing time of 700 ms.

The HETCOR experiment had 2048 points in F2- and 256 slices in F1-dimension and they were zero-filled to 512 points. Each slice was obtained using 128 repetitions, the relaxation delay of 1 s and the spectral width of 13600 Hz in F2 and 2700 Hz in F1 domains, respectively. The resolution in F2 was 13.3 Hz/point and in F1 dimension it was 10.5 Hz/point. The protons were decoupled with Waltz 16 modulation.

The compounds **1-4** are prepared as already described.^{14,15}

RESULTS AND DISCUSSION

Preliminary assignation of the carbon atom resonances in **1** and **2** has been performed on the basis of one-dimensional ^{13}C NMR spectra, Table 1. Quaternary atoms C-2 and C-3 are magnetically very similar, and distinction was based on higher deshielding of the C-3 atom, α - to the lactone carbonyl group, than of the C-2 atom in β -position to carbonyl and carboxyl groups. From this reason the resonance of C-10-methyl carbon appears at the highest field, while the difference in chemical shifts between resonances of C-8- and C-9-methyl carbons is less pronounced. The lactone carbonyl C-7 resonance in three solvents is found at 8.6, 9.6 and 5.52 ppm downfield from the carboxylic carbonyl C-6 resonance. Similar difference in deshielding effect is observed for C-4 and C-5.

The ^1H NMR spectrum of **1** is apparently simple in various solvents and consists of the three singlets for the methyl groups and four multiplets for four protons in the ethylenic subunit. Still, full assignment of the spin systems in **1** and **2** was possible only after detailed analysis of the COSY, HETCOR and NOESY spectra. The ^1H NMR chemical shift data in deuteroacetone, deuteropyridine and deuterochloroform are listed in Table 2. In the COSY spectra of **1**, the cross-peaks of the methylenic protons attached to C-4 and C-5 atoms have been observed. Each proton rises three cross-peaks, a characteristic pattern for two vicinal methylene groups with four nonequivalent protons. Distinction between protons bound to C-4 and C-5 was made on the basis of two-dimensional heteronuclear correlation (HETCOR) spectra, wherein two pairs of cross-peaks revealed the interaction between two methylene groups (Fig. 1).

The carbon atom resonance in the higher field (29.27 ppm in deuteroacetone) is connected to the proton resonances at 1.616 and 2.036 ppm, while the second carbon ($\delta = 31.23$ ppm) is attached to the protons rising signals at 1.981 and 2.475 ppm, respectively (Table 2). Camphanic acid **1** forms pyridinium salt, and in deuteropyridine carboxylic group deshields both protons on C-5 more than on C-4; *syn* (H_b) and *anti* (H_a) protons still remain undistinguishable.

Table 1. ^{13}C Chemical Shift Data (δ in ppm) of Camphanic Acid (**1**) and Rh2(camph)4 (**2**) in Deuteroacetone, Deuteropyridine and Deuterochloroform at 25°C.

Carbon	1			2			Δ_1^{a}	Δ_2^{a}	Δ_3^{a}
	$(\text{CD}_3)_2\text{CO}$	$\text{C}_5\text{D}_5\text{N}$	CDCl_3	$(\text{CD}_3)_2\text{CO}$	$\text{C}_5\text{D}_5\text{N}$	CDCl_3			
C-1	91.65	92.68	91.65	91.20	91.77	91.35	-0.45	-0.91	-0.30
C-2	54.33	54.20	54.82	53.74	54.12	53.96	-0.59	-0.08	-0.86
C-3	55.30	55.38	55.34	54.37	54.85	54.54	-0.93	-0.53	-0.80
C-4	29.27	29.65	29.24	28.76	29.21	28.77	-0.51	-0.44	-0.47
C-5	31.23	31.46	30.95	30.74	31.48	30.81	-0.49	-0.02	-0.16
C-6	168.88	170.95	172.71	186.52	187.71	186.45	17.64	16.76	13.74
C-7	178.47	179.55	178.23	177.75	178.52	178.14	-0.72	-1.03	-0.09
C-8	16.96	17.28	16.96	16.68	17.20	17.27	-0.28	-0.08	0.31
C-9	16.96	17.22	16.91	16.40	17.05	16.84	-0.56	-0.17	-0.07
C-10	9.97	10.22	9.93	9.32	10.00	9.68	-0.65	-0.22	-0.25

^a $\Delta_1 = \delta_2 - \delta_1$ of respective signals of **1** and **2** in $(\text{CD}_3)_2\text{CO}$; $\Delta_2 = \delta_2 - \delta_1$ of respective signals in $\text{C}_5\text{D}_5\text{N}$; $\Delta_3 = \delta_2 - \delta_1$ of respective signals in CDCl_3 .

Table 2. ^1H Chemical Shift Data (δ in ppm) of Camphanic Acid (**1**) and Rh₂(camph)4 (**2**) in Deuteroacetone, Deuteroacetonitrile and Deuterochloroform at 25°C

Proton	1			2			Δ_1^a	Δ_2^a	Δ_3^a
	(CD ₃) ₂ CO	C ₅ D ₅ N	CDCl ₃	(CD ₃) ₂ CO	C ₅ D ₅ N	CDCl ₃			
H-4 _a	1.616	1.413	1.735	1.492	1.408	1.592	-0.124	-0.005	-0.143
H-4 _b	2.036	1.671	2.101	1.914	1.662	1.877	-0.122	-0.009	-0.224
H-5 _a	1.981	1.901	1.976	1.699	1.691	1.694	-0.282	-0.210	-0.282
H-5 _b	2.475	2.397	2.473	2.347	2.284	2.349	-0.128	-0.113	-0.124
Me-8	1.100	0.915	1.141	0.917	0.825	0.987	-0.183	-0.080	-0.154
Me-9	0.947	0.842	1.025	0.685	0.711	0.740	-0.262	-0.131	-0.285
Me-10	1.069	0.904	1.106	0.978	0.889	1.051	-0.091	-0.015	-0.055

^a $\Delta_1 = \delta_2 - \delta_1$ of respective signals of **1** and **2** in (CD₃)₂CO; $\Delta_2 = \delta_2 - \delta_1$ of respective signals in C₅D₅N; $\Delta_3 = \delta_2 - \delta_1$ of respective signals in CDCl₃.

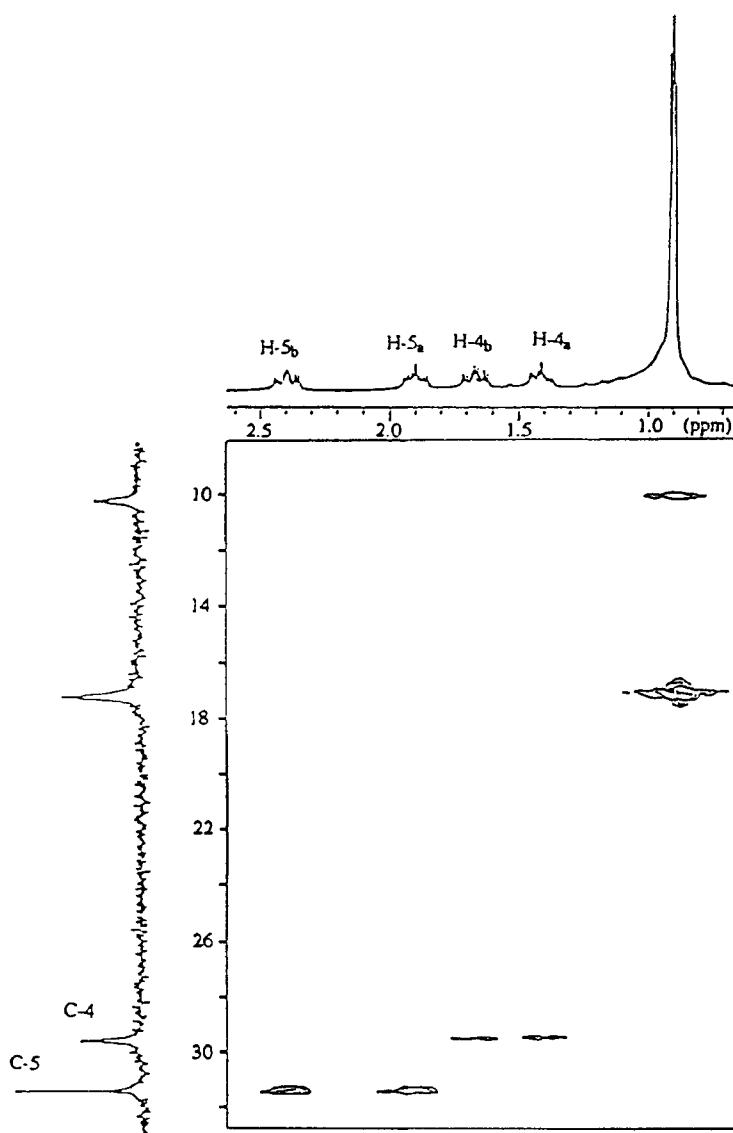


Fig. 1. ^1H - ^{13}C heteronuclear correlation (HETCOR) spectrum of camphanic acid (1) in deuteropyridine, 25°C

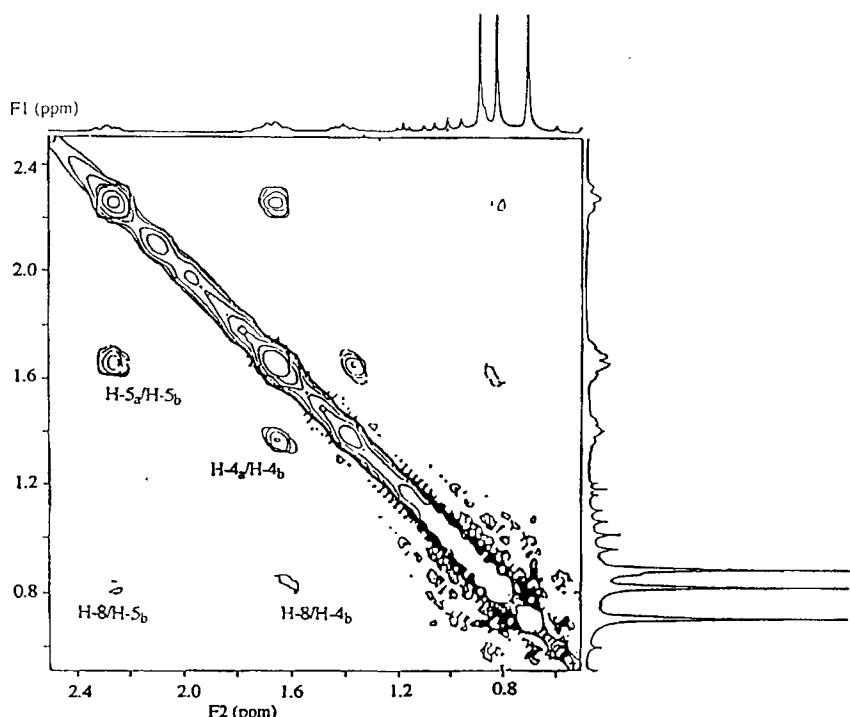
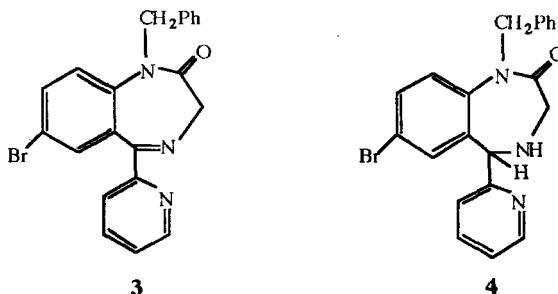


Fig. 2. NOESY spectrum of $\text{Rh}_2(\text{camph})_4$ (2) in deuteropyridine, 25°C .

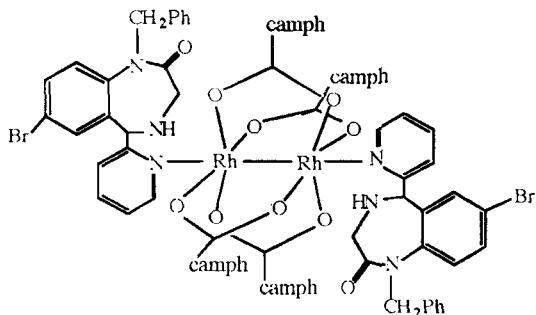
The intramolecular proton-proton connectivities observed in the NOESY spectrum (Fig. 2) provides additional piece of information which allow unambiguous assignation of the methylenic protons. Two cross-peaks between methylene and methyl regions were assigned to the *syn* protons (H_b) on C-4 and C-5, and C-8-methyl group, *i.e.* to the protons which are the closest through space. The chemical shift sequence of the proton signals of **1** in deuterioacetone and deuteriochloroform is $\delta\text{H-5}_\text{b} > \delta\text{H-4}_\text{b} > \delta\text{H-5}_\text{a} > \delta\text{H-4}_\text{a}$, while in deuteropyridine it is $\delta\text{H-5}_\text{b} > \delta\text{H-5}_\text{a} > \delta\text{H-4}_\text{b} > \delta\text{H-4}_\text{a}$.


In dinuclear Rh(II) complex **2** all protons of **1** are shielded (Table 2), but the sequence of the methylenic proton resonances is not affected. The most shielded protons in deuterioacetone and deuteriochloroform are closest to the

carbonyl group, *i.e.* H-5_a and Me-9 ($\Delta\delta$ is approx. 0.27 ppm). The most distant protons of Me-10 are least affected. Owing to the formation of pyridine adduct all protons in **2** are less shifted to higher field in deuteropyridine than in deuteroacetone.

In the complex **2** all carbon resonances of the ligand, except that of C-6, are shifted less than 1 ppm, as compared to the same resonances for **1**. It is interesting to note that the axial coordination of pyridine to **2**, which strongly influences its chromophoric system as demonstrated by UV and CD spectra,^{14,16} does not significantly influence the δ values of carbons in **2** as compared to the values in the deuteroacetone and deuterochloroform (Table 1). A large effect in the corresponding proton spectrum might be attributed to the well-known aromatic solvent induced shift (ASIS) effect of pyridine.

In conclusion, the NMR data revealed strong electron transfer from the carboxylic group to the Rh(II) atoms in dinuclear complex **2**. The reactivity of the Rh(II) tetracarboxylates in catalytic cyclopropanation (coordination of electron-deficient carbene) presumably derives from this property.¹⁷


Coordination of 5-pyrido-1,4-benzodiazepin-2-ones **3** and **4** to **2** was then studied, since we noticed that complexes of 1,4-benzodiazepines with $\text{Rh}(\text{OAc})_4$ are catalysts in hydrogen transfer reactions.⁵ Signals that belong to atoms near the coordination site are sometimes broad in the NMR spectra of such complexes, because of kinetic instability of such organometallic species.¹⁸

In the ^{13}C NMR spectrum of dirhodium tetracamphanate **2** adduct with ligand **3** all signals are broadened, in particular those at δ 30.81, 53.96, 91.35 and 186.45 ppm, belonging to C-atoms near to coordination site; C-5, C-2, C-1

and C-6. ^{13}C NMR spectrum of the adduct with **4** exhibit similar feature, confirming the assignation of the signals for C-2 and C-3.

^1H NMR spectra (Fig. 3), revealed that complexation of **2** with **3** or **4** originated a different types of adducts. The ^1H NMR of adduct from **2** and saturated ligand **4** is quite simple and shows only three singlets for three methyl groups in camphanic subunit. The final spectrum of the adduct reveals 1:2 ratio of **2**:**4**. This suggests that structural equivalence of all four camphane moieties is remained, and benzodiazepine is loosely bound (freely rotating) as monodentate ligand. The accumulated evidence indicates the structure **5** for **2**:**4** adduct, similar to that of dirhodium tetraacetate with pyridine.¹ Two molecules of 4,5-dihydro-ligand **4** are coordinated *via* pyridine nitrogen to both rhodium atoms of **2**. Since pyridine nitrogen disposes with better π -back donating properties than N-4, it is preferred for the coordination to the axial position of the Rh atom.¹⁹

5

On the other hand, ^1H NMR spectra of adduct **2**:**3** are a much more complex; a multiplicity of methyl signals appears in the final adduct, which exhibits 1:1 stoichiometry. This suggest that complex has nonsymmetrical structure **6**, similar to the structure of dirhodium tetraacetate complex with bipyridine.³ Its formation require the cleavage of Rh-O bond and displacing of one camphanic molecule to the second rhodium atom. Interaction of this type with adenine groups is of importance for the biological, carcinostatic activity of rhodium dinuclear complexes with achiral carboxylic acids.⁶ Analogous binding

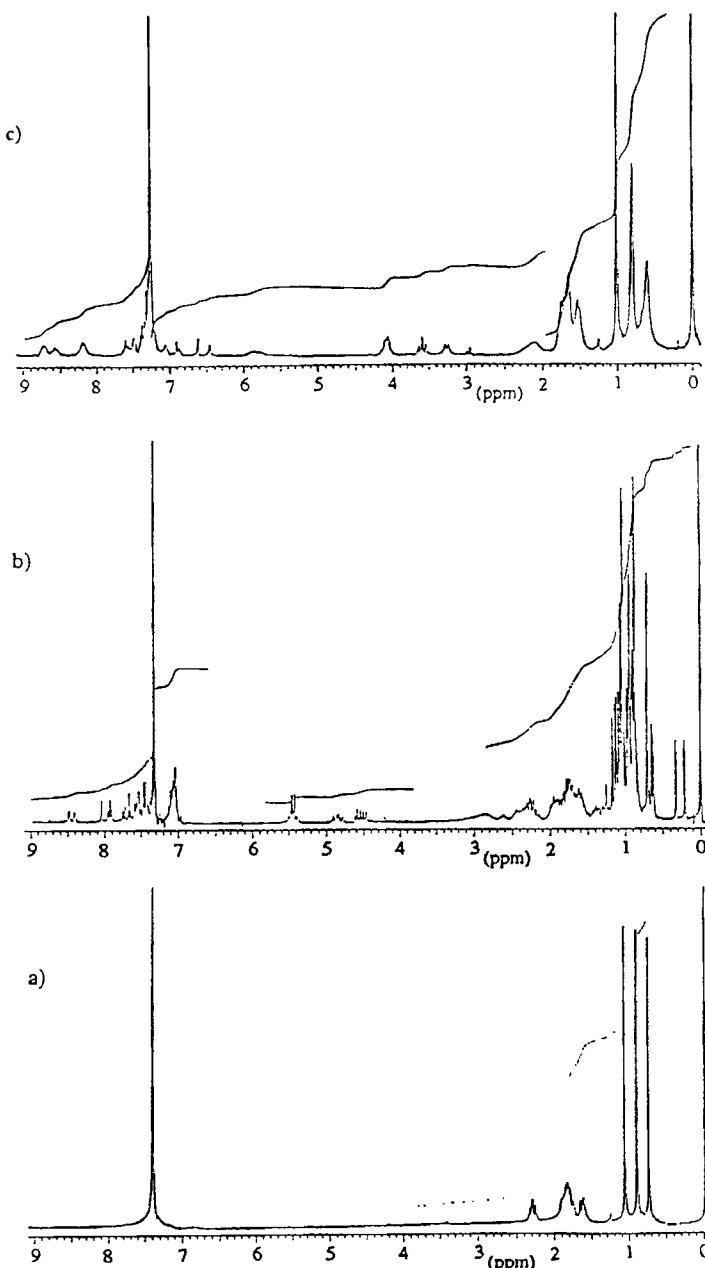
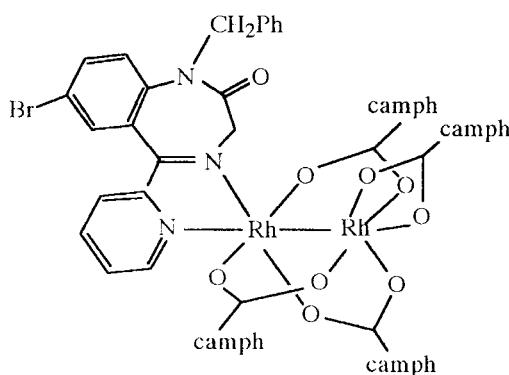



Fig. 3. The ^1H NMR spectra in deuteriochloroform of a) $\text{Rh}_2[\text{camphanate}]_4$ (2); b) adduct of $\text{Rh}_2[\text{camphanate}]_4$ with 3; c) adduct of $\text{Rh}_2[\text{camphanate}]_4$ with 4.

in **6** generates one specific coordination site on the second Rh atom, and renders the whole complex topologically well defined. Study of the enantioselectivity of chiral complexes **5** and **6** in some model reactions (hydrogen transfer, cyclopropanation) is envisaged.

6

CONCLUSION

In conclusion we can state that combined NMR techniques, herein described, allowed complete assignment of ^{13}C and ^1H NMR spectra of camphanic acid, well known chiral auxiliary agent, and its Rh(II) dimeric salt. From the NMR data can be also concluded on the electron transfer from the carboxylic group to the Rh-atoms in dinuclear complex **2**. Reactivity of Rh(II) carboxylates in some catalytic reactions resides presumably in this property.

NMR spectra of the adducts of dirhodium tetracamphanate **2** with 5-pyrido-1,4-benzodiazepines **3** and **4**, *i.e.* **6** and **5**, confirmed the assignation, and revealed two different types of complexation in these adducts. Whereas the former ligand forms 1:1 adduct with bidentate bound pyridobenzodiazepine as the most stable, the latter is bound *via* pyridine nitrogen in the symmetric 2:1 adduct. Reported results are expected to contribute to general understanding of catalytic activity and enantioselectivity of this type of chiral complexes.

ACKNOWLEDGMENTS

The authors acknowledge a skillful assistance of Mr. T. Paprskar. The ^1H and ^{13}C NMR spectra were accomplished by Mrs. B. Metelko and Mr. Ž. Marinić. This work was supported by the Ministry of Science and Technology, Republic of Croatia and in part by the Board of Scientific Cooperation between Federal Republic of Germany and Republic of Croatia (Jülich Programme).

REFERENCES

- 1.a) Cotton FA., Felthouse TR., Molecular and chain structure of four tetrakis(μ -propionato)dirhodium (II) complexes with axial nitrogen-donor ligands. *Inorg. Chem.* **1981**, 20:600-608.
- 1.b) Goodgame DML., Lawrence AS., Slawin AMZ., Williams DJ., Stratford IJ. Synthesis, characterization and radiosensitizing properties of some nitroimidazole adducts of Rh (II) carboxylates. *Inorg. Chim. Acta* **1986**, 125:143-149.
2. Siniestra RD., Najjar R. Synthesis and spectroscopic studies on dirhodium (II) carboxylate adducts with sulfadiazine. *Spectrosc. Lett.* **1993**, 26:245-259.
- 3.a) Perlepes SP., Huffman JC., Matonic JH., Dunbar KR., Christou G. Binding of 2,2'-bipyridine to the dirhodium(II) tetraacetate core: unusual structural features and biological relevance of the product $\text{Rh}_2(\text{OAc})_4(\text{bpy})$. *J. Am. Chem. Soc.* **1991**, 113:2770-2771.
- 3.b) Crawford CA., Matonic JH., Streib WE., Huffman JC., Dunbar KR., Christou G. Reaction of 2,2'-bipyridine (bpy) with dirhodium carboxylates: mono-bpy products with variable chelate binding modes and insights into the reaction mechanism. *Inorg. Chem.* **1993**, 32:3125-3133.
4. Marčec R. Ligand effects in the rhodium acetate catalyzed hydrogen transfer. *React. Kinet. Catal. Lett.* **1986**, 31:337-341.
5. Marčec R., Raza Z., Šunjić V. Transfer hydrogenation of cyclohexanone by rhodium (II) carboxylato complexes containing 1,4-benzodiazepines as nitrogen ligands. *J. Mol. Cat.* **1991**, 69:25-31.

6.a) Goodgame DML., Page CJ., Williams DJ. Potential multifunctional anti-cancer metal complexes. I. Synthesis and X-ray structural studies of some dinuclear rhodium(II) carboxylate complexes with diamine substituted acridine ligands in terminal coordination positions. *Inorg. Chim. Acta* **1988**, 153:219-225.

6.b) Dyson TM., Morrison EC., Tocher DA., Dale LD., Edwards DI. Metal complexes of radiosenzitization drugs: the characterization of the metronidazole adducts of dirhodium(II)tetracarboxylate compounds. *Inorg. Chim. Acta* **1990**, 169:127-131.

6.c) Goodgame DML., O'Mahoney CA., Page CJ., Williams DJ. Potential multifunctional anti-cancer metal complexes. II. Synthesis of some rhodium (II) and platinum (II) complexes of diamine-substituted acridine-4-carboxamides, and the X-ray structure of $[\text{Rh}(\text{CH}_3\text{CO}_2)_2\text{L}]_2$ ($\text{L} = \text{N-[2-(dimethylamino)hexyl]acridine-4-carboxamide}$). *Inorg. Chim. Acta* **1990**, 175:141-147.

7. Farrell N., Vargas MD., Mascarenhas YA., Gambardella MTP. Rhodium carboxylate complexes of diphenyltriazene and berenil, a substituted triazene and DNA-binding ligand. Crystal and molecular structure of tetrakis(μ -acetato) bis(diphenyltriazene)dirhodium(II). *Inorg. Chem.* **1987**, 26:1426-1429.

8. Aoki K., Yamazaki H. Stereospecific interaction between tetrakis(μ -carboxylato)dirhodium(II) antitumor agents and nucleic acid bases. Crystal structure of $[\text{Rh}_2(\text{acetato})_4(\text{AAMP})] \cdot 3.5 \text{ H}_2\text{O}$ (AAMP = 4-amino-5-(aminomethyl)-2-methylpyrimidine). *J. Am. Chem. Soc.* **1984**, 106:3691-3692.

9. Chinchilla R., Nàjera C., Yus M., Heumann A. Kinetic resolution of racemic alcohols with chiral carboxylic acids and dicyclohexylcarbodiimide *Tetrahedron: Asymmetry* **1990**, 1:851-854.

10. Naegeli P., Wirz-Habersack Y. Enantidifferentiation of odour perception of α -ambrinols. *Tetrahedron: Asymmetry* **1992**, 3:221-222.

11. Comisso G., Sega A., Šunjić V., Lisini A. Synthesis, conformational studies and enantioselective homogeneous catalytic hydrogenation with CRC-PHOS, and some congeners. *Croat. Chem. Acta* **1981**, 54:375-395.

12. Rusman S., Kojić-Prodić B., Ružić-Toroš Ž., Šunjić V., Lenstra ATH. Enantioselective reduction of some aromatic ketones by Baker's yeast. *Croat. Chem. Acta* **1990**, 63:701-718.
13. Kozikowski AP., Chen C., Ball RG. An unusual fragmentation process discovered during the course of cleavage of a camphanic acid amide. *Tetrahedron Lett.* **1990**, 31:5869-5872.
14. Kojić-Prodić B., Marćec R., Nigović B., Raza Z., Šunjić V. Preparation, crystal structure and chiroptical properties of $\text{Rh}_2[\text{camphanate}]_4(\text{MeOH})_2$. *Tetrahedron: Asymmetry* **1992**, 3:1-4.
15. Kovač T., Belin B., Fajdiga T., Šunjić V. Synthesis of 7-bromo-5-(2-pyridyl)-3-hydroxy-2H-1,4-benzodiazepin-2-one. *J. Heterocycl. Chem.* **1980**, 17:59-62.
16. Agaskar PA., Cotton FA., Falvello LR., Hahn S. Chiroptical properties of compounds containing metal-metal bond. Syntheses, structures, and the measurement and interpretation of electronic and circular dichroism spectra. *J. Am. Chem. Soc.* **1986**, 108:1214-1223.
17. Doyle MP., Devora GA., Nefedov AO., High KG., Addition/elimination in the rhodium(II) perfluorobutyrate catalyzed hydrosilylation of 1-alkenes. Rhodium hydride promoted isomerization and hydrogenation. *Organometallics* **1992**, 11:549-555.
18. Vinković V., Raza Z., Šunjić V. ^{13}C NMR and IR evidence for the two types of copper(I) and (II) complexes with 5-pyrido-1,4-benzodiazepin-2-ones. *Spectr. Lett.* **1994**, 27:269-279.
19. Yamamoto A. Organotransition metal chemistry. Fundamental concepts and applications. J. Wiley&Sons, New York, **1986**, pp 54-75.

Date Received: January 3, 1995

Date Accepted: February 6, 1995